1. Write the repeating decimal as a fraction: $0.6 \overline{3}$
2. Solve the equation $-\frac{3}{8} n=18$
3. Is this statement correct? If it is or isn't explain why: $\left(4.6 \times 10^{5}\right)-\left(2.1 \times 10^{4}\right)=250,000$
4. A square has an area of $48 \mathrm{~cm}^{2}$; determine the length of each side.
5. Simplify the expression: $\frac{\left(2 x^{2} y^{4}\right)^{3}}{8 x^{5} y^{12}}$
6. Determine if the expression is between 7 and 9 on a number line: $2 \sqrt{18}$; justify with evidence.
7. Is 2×10^{15} five times larger than 2×10^{3} ? Justify your argument with evidence.
8. The volume of a cube is $343 \mathrm{~mm}^{3}$; Determine it's surface area.
9. Write the repeating decimal as a fraction: $0.8 \overline{7}$
10. Solve the equation $1 \frac{1}{2} a=-9$
11. Is this statement correct? If it is or isn't explain why:
$\left(8.8 \times 10^{8}\right)-\left(6.2 \times 10^{7}\right)=818,000,000$

12. A square has an area of $13 \mathrm{~cm}^{2}$; determine the length of each side.
13. Simplify the expression: $\frac{\left(3 x^{4} y^{3}\right)^{2}}{18 x^{8} y^{5}}$
14. Determine if the expression is between 7 and 9 on a number line: $2 \sqrt{32}-6$; justify with evidence.
15. Is 4×10^{6} five times larger than 8×10^{5} ? Justify your argument with evidence.
16. The volume of a cube is $216 \mathrm{in}^{3}$; determine the perimeter of one face of the cube.
17. Write the repeating decimal as a fraction: $-1.6 \overline{8}$
18. Solve the equation: $3 \frac{1}{4} g=-0.75$
19. Is this statement correct? If it is or isn't explain why:
$\left(7.3 \times 10^{6}\right)-\left(4.2 \times 10^{5}\right)=6,880,000$

20. A square has an area of $128 \mathrm{~cm}^{2}$; determine the length of each side.
21. Simplify the expression: $\frac{\left(2^{2} x^{4} y^{3}\right)^{4}}{256 x^{16} y^{12}}-1$
22. Determine if the expression is between 7 and 9 on a number line: $3 \sqrt{50}-12$; justify with evidence.
23. Is 2×10^{14} five times larger than 4×10^{13} ? Justify with evidence.
24. The area of a face of a cube is $196 \mathrm{~m}^{2}$; determine the cube's volume.

Instructions: Answer each question on loose leaf, quad-ruled (graph paper), headed properly and written in lead-graphite. Remember to fold paper along the center, work exercises in order top to bottom, left column then right column. Staple multiple pages

